

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

 Technical Report

1204

Versioning System for Distributed
Ontology Development

S.K. Damodaran

15 March 2016

This material is based on work supported by the Assistant Secretary of Defense for Research and Engineering
under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001.

Approved for public release: distribution unlimited.

This report is the result of studies performed at Lincoln Laboratory, a federally funded research and

development center operated by Massachusetts Institute of Technology. This material is based on

work supported by the Assistant Secretary of Defense for Research and Engineering (ASD[R&E]),

under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings

and conclusions or recommendations expressed in this material are those of the authors and do

not necessarily reflect the views of ASD(R&E).

© (2016) MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb
2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS
252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized
by the U.S. Government may violate any copyrights that exist in this work.

Versioning System for Distributed Ontology Development

S.K. Damodaran
Formerly Group 59

15 March 2016

Massachusetts Institute of Technology
Lincoln Laboratory

Technical Report 1204

Lexington Massachusetts

Approved for public release: distribution unlimited.

This page intentionally left blank.

 iii

EXECUTIVE SUMMARY

Common Cyber Environment Representation (CCER) is an ontology for describing operationally
relevant, and technically representative, cyber range event environments. Third-party ontology
developers, as well as in-house ontology developers, contributed to CCER Ontology. Since the cyber
range environments continue to evolve and expand, we expect the CCER Ontology also to evolve and
expand. Therefore, an easy to comprehend versioning scheme that will support a systematic ontology
evolution is needed. This document describes the requirements for such a versioning scheme, and its
design. This document also describes how to assign version numbers under different ontology evolution
situations, and provides guidelines for evaluating the impact of the version changes.

This page intentionally left blank.

v

ACKNOWLEDGMENTS

The author would like to express his gratitude to Jeffrey M. Bradshaw, Larry Bunch, and Andrzej
Uszok of Florida Institute for Human and Machine Cognition (IHMC) for substantial contributions to the
development of the ontology versioning scheme described in this document.

This page intentionally left blank.

vii

TABLE OF CONTENTS

 Page

Executive Summary iii
Acknowledgments v
List of Illustrations ix

1. INTRODUCTION 1

2. CCER ONTOLOGY ORGANIZATION 5

2.1 Ontology Taxonomy 5
2.2 Ontology Modularity 7
2.3 File System Alignment 9

3. VERSIONING SCHEME 13

3.1 Topic Evolution and Folder Structure 13
3.2 Encoding Ontology Versioning 15
3.3 No Delete Policy 16

4. ONTOLOGY EVOLUTION 17

4.1 Version Assignment By Developers 17
4.2 Ontology Evolution for Users 20

5. CONCLUSION 23

BIBLIOGRAPHY 25

This page intentionally left blank.

ix

LIST OF ILLUSTRATIONS

 Figure Page

 No.

1 Model and instance ontologies. 1

2 CCER folder structure. 10

3 Major versions. 14

4 Assigning version sumbers. 18

5 Impact of version upgrade on users. 20

This page intentionally left blank.

1

1. INTRODUCTION

Within the cyber range community, ontologies are being used increasingly to specify the
description of the environment in which cyber events can be conducted [CSTL1]. This report describes
some key design considerations we have formulated for the evolution of one set of such ontologies for
that community, the Common Cyber Environment Representation (CCER) [CCER1]. Common Cyber
Environment Representation (CCER) is an ontology for describing operationally relevant, and technically
representative, cyber range event environments. CCER Ontology is created to support reusable machine-
interpretable representation of the cyber range event environment that will enable automation of the event
process through interoperability among cyber range support tools [CRIS1].

Note on terminology: We use the term CCER Ontology or sometimes the abbreviated form CCER
to refer to all ontology files within CCER. The term ontologies refers to multiple ontology files, while the
term ontology refers to a single ontology file.

Figure 1. Model and instance ontologies.

2

CCER Ontology consists of a set of ontologies in RDF/OWL [RDF1, OWL3] to represent the cyber
event environment. A subset of CCER Ontology is considered model ontologies, or CCER OWL schema,
and the rest of the ontologies are considered instance ontologies. The model ontologies define the
framework for describing the various aspects of a cyber range event environment. The instance ontologies
describe individual cyber event environments using the framework provided by the model. Cyber range
developers use software tools to create a specifically configured instance of the model that other tools
may use to do further processing. This instance is referred to as an instance ontology to distinguish it from
the CCER model ontologies to which the instance ontology conforms. The scope of this document is
limited to the versioning of CCER model ontologies.

Event environments continually evolve to include newer kinds of entities, systems, and simulations,
and the CCER Ontology must be modified to incorporate these new developments. The CCER Ontology,
much like source code, will also change for other reasons, including the following:

• Bugs

• Changes in the domain such as changes to organizations, changes in names of things in the
world

• Changes in a community’s shared conceptualization of the domain that results in splitting and
merging of individual classes or properties, or refactoring of groups of classes and properties

• Changes in the way the ontology will be used, for example, different perspectives on the
domain such as natural vs. man-made features on a map; or continuous vs. discrete time

• Restructuring of the ontology motivated by performance considerations for a given application
or due to the requirements of a given reasoner.

While cyber range ontology developers share many requirements in common with other developers
of large ontologies in loosely coupled development communities, they also deal with considerations
specific to the defense cyber range community, since cyber range ontology developers and users belong to
that community. Below is a list of the major requirements that govern the evolution of CCER Ontology:

• Interoperability across versions. Tools using CCER may evolve to use several different
versions of subsets of CCER Ontology. In a heterogeneous environment of tools, it is normal to
expect different tools or toolsets to interoperate even though they use different versions of a
subset of CCER. It is important to have the ability to clearly identify which versions of an
ontology or a set of ontologies have backward compatibility and which do not.

• Distributed and isolated development. CCER users and developers are diverse and dispersed
across multiple organizations. Projects that use CCER have different sponsor organizations.
Security requirements considerably limit information and result-sharing across projects. Often,
a team may independently modify the same concepts or relationships without the knowledge of

3

anyone else in the community. Such modifications may be due to specialized subject matter
expertise or merely because of an incompatibility between some portion of the ontologies and
the software tools in use at a given location. These modifications may or may not be shared
with other CCER ontology developers. For these and other reasons, we are entirely dependent
on community conformance to a clear set of development and versioning guidelines to assure
that changes and extensions can be integrated back into the “main development branch” when
and if they become available.

• Long accreditation process. New tools and technologies go through a long accreditation
process in Department of Defense environments. Pinpointing the changes from one set of
CCER Ontology to a new set of CCER Ontology will accelerate the accreditation process when
a tool upgrades to a newer version of the CCER Ontology.

• Reuse of third-party ontologies. To expedite the development of CCER Ontology, the CCER
team has reused a number of publicly available ontologies. These ontologies have separate
independent evolutionary modification and versioning cycles and conventions. When CCER
Ontology are dependent on these external ontologies, there must be a way to make CCER
Ontology adapt to the version changes of external ontologies gracefully.

• Version management complexities. Versioning, especially sophisticated versioning schemes,
can be problem prone because the complicated rules confuse developers and users. Some of the
problems are the following: version-bloat, where copies of older versions litter the landscape;
version-fragmentation, where one must jump from folder to folder to follow the fragmented
history of changes to given file; and version amnesia, where nobody can remember what
version number to use for a given ontology and has to look it up constantly. Use of simple rules
and automation tools can considerably help with version management.

• Use-case ontology configuration. Each cyber event environment may rely on a different subset
of the CCER Ontology. The use case captures the exact ontology configuration required for a
particular type of project, for example, Situational Awareness. The ontology configuration will
include the model ontologies, their versions, and their import dependencies. The details of the
configuration are used by software tools to verify conformance of an instance ontology to the
corresponding model ontologies. In addition, CCER Ontology users may be able to use the
configuration information to learn how the instance ontology and corresponding model
ontologies evolved over a period of time.

Many of the requirements listed above may be relevant to many members of the Semantic Web
community. For example, the distributed and isolated development requirement may apply to non-cyber
range communities of public ontology users and developers working separately who may rarely or ever be
in contact with one another. Their separation by time and distance mirrors the separation by sponsors and
security classifications experienced by the cyber range community. Obviously, the long accreditation time

4

for secured environments is unique for the cyber range community. The requirement related to reuse is
the consequence of a development choice that the CCER team adopted.

In the cyber range community, the most practical means to collaborate on ontologies across teams is
by sharing files asynchronously, outside of a version management system such as CVS, git, or svn.
Collaborative development of ontologies assume real-time collaboration using tools [Noy1, LHK09,
RGZH, GJKZ, RGHB]. The prevalent ontology development approaches assume an open environment
for sharing of information across the Internet, or the “semantic web.” However, we observe that the
maintenance of an ontology and its reuse is not a high priority for the majority of the publicly available
ontologies. For example, Swoogle [SEA1], the first web search tool for ontologies, lists several
ontologies created for specific domain areas, and it would be hard for the user to know which one is
maintained or widely adopted, and how to use the available ontology without researching each ontology.
There could be multiple versions for an ontology, but the onus of making sure that the right version is
used for a specific application is on the user of the ontology. A clear set of guidelines for evolution of an
ontology would have considerably helped the users of the ontology in these situations. The currently
accessible guidelines, such as [VURI], do not provide clear and adequate guidance for versioning
ontologies developed spread out in space and time.

The OWL 2 representation provides new features specifically to address requests for versioning
support [OWL2]. However, it is important for our ontology consumers to always specify the desired
major version of every ontology import statement by including the major version number in the ontology
IRI as well as the location (URL). Several approaches to ontology version management require specific
tools to be used for version change detection [OVR1]. While CCER certainly encourages the use of such
tools, such a requirement could be raised as a barrier to entry for the community. An approach is needed
that does not require new tools.

To address the requirements above, we have defined a set of guidelines for version evolution of
CCER ontology for its maintenance and extension. We also hope that this set of guidelines may be
applicable to other ontologies that aspire to be better maintained under similar requirements.

5

2. CCER ONTOLOGY ORGANIZATION

In this section, we describe the organization of the CCER Ontology. The organization is described
in three subsections. First, we describe how we categorize the different components of CCER Ontology in
Section 2.1. In Section 2.2, we describe the modular structure for CCER Ontology based on the concept
of Topic. Section 2.3 defines the close alignment between the file system structure and the CCER
Ontology organization described in Sections 2.1 and 2.2.

2.1 ONTOLOGY TAXONOMY

In this section, we describe the taxonomy of CCER Ontology. CCER Ontology contents can be
classified based on two useful criteria: origination and usage. There are two broad categories based on the
origin of the ontologies: ontologies created by the CCER team, or third-party ontologies that are not
created by the CCER team. The CCER Ontology can be categorized as Core, Domain, and Use Case,
based on their usage. We first describe in Section 2.1.1 how CCER Ontology is categorized based on
where its components were developed. In Section 2.1.2, we describe another orthogonal categorization
based on how ontologies are used. Both of these classifications are used in Section 2.2 and 2.3 to organize
and store CCER Ontology.

2.1.1 Origination-based Taxonomy

Several useful ontologies have been created over the last decade, and CCER utilizes those
ontologies. Using or extending classes and properties from an existing third-party core ontology is always
preferred over inventing new ontologies that would practically serve the same purpose. Reusing existing
ontologies does not simply save time and effort to the CCER team; it also increases the prospects of
interoperability of CCER Ontology with other ontologies. The third-party ontologies exhibit varied
properties, and how the CCER team maintains these ontologies depends on their respective properties.

1. Some of these ontologies are actively being maintained, such as KAoS [UBJ2004] or
OWLTime [TIME]. CCER will redistribute those ontologies without any change as long as the
copyright statements permit such redistribution. When such redistribution is not possible by
CCER, the distribution will contain pointers as to where to obtain those ontologies.

2. When an ontology is not actively maintained, and the CCER team will need to modify those,
the CCER team will do such updates to those ontologies only if copyright statements permit it.

3. When an ontology is obtained from other formats or transcribed from papers, CCER will
consider those ontologies to be CCER team created or third-party generated, depending on
whether the CCER team is responsible for generation and maintenance of the ontology. For
example, NML [NML] is maintained externally, and therefore, we consider it to be a third-
party ontology.

6

When a particular ontology has a third-party origin, and already has an assigned namespace URI,
CCER will continue to use the third-party ontology namespace URI. The CCER Ontology team will make
reasonable efforts to maintain or update CCER Ontology consistent with new versions of ontologies
developed by standards groups or other third parties as they appear. The CCER team will avoid directly
modifying third-party ontologies unless the CCER team is directly responsible for their maintenance.

2.1.2 Usage-based Taxonomy

Based on the usage of the ontologies, CCER Ontology can be classified as Core, Domain, or Use
Case. We describe these categories below. We also show how the origination-based taxonomy and usage-
based taxonomy relate to each other.

Core ontologies define general-purpose classes that are used by other, more specific domain
ontologies. Domain ontologies define domain-specific classes and properties that are specific to an area of
knowledge or user application (e.g., ontologies defining firewalls, networks, flowers). Use-case
ontologies contain instances of domain and core ontologies, and do not define any new classes or
properties. Use-case ontologies are created to support specific use cases.

Core Ontologies

A core ontology defines general-purpose classes that are widely used by other, more specific
domain ontologies. Upper ontologies are considered to be core ontologies. Because changes to core
ontologies can have significant side effects on other CCER ontologies that depend on them, they are not
updated too frequently.

Third-Party Core Ontologies. Third-Party core ontologies are specified and maintained by
standards groups or other third parties (e.g., OWL Time, Dublin Core, KaOS core ontologies, and
WSGS 84).

Domain Ontologies

Domain ontologies define domain-specific classes and properties that are specific to an area of
knowledge or user application (e.g., ontologies defining firewalls, networks, flowers). Domain ontologies
may be created by specialization of classes in core ontologies by extending them with new subclasses and
properties. Domain ontologies can be used as the main building blocks of a given CCER application (e.g.,
ontologies defining firewalls or networks).

Domain ontologies may frequently have dependencies among themselves. In such cases, cycles
need to be avoided among such dependencies. In addition, no transitive dependencies should occur among
ontologies, i.e., if one ontology imports another, it should not directly or indirectly import an ontology on
which the reused one is dependent. Sometimes several domain ontologies will share a dependency on
classes in a core ontology or other domain ontologies.

7

Other than code lists, such as a list of all fifty states; or singleton values, such as true or false,
Named Individuals should not normally be included in domain ontologies. Such Named Individuals may
also be defined as part of core and upper ontologies. Domain ontologies sometimes may have significant
side effects on other CCER Ontology that depend on them, so they should be modified thoughtfully and
with care.

CCER Domain Ontologies. This category is meant for ontologies that are specified and maintained
by the CCER Ontology Team (e.g., CCER Firewall Ontologies). This may also include ontologies that
have been specified elsewhere but are actively maintained and updated by CCER (in some cases, because
they are not being actively maintained by their creators, or in the other case, where the original format is
not OWL (e.g., SCAP1)).

Third-Party Domain Ontologies. This category contains ontologies that are specified and
maintained by standards groups or third parties (e.g., NML Network Ontologies).

Use-Case Ontologies

Use-case ontologies contain instances of domain and core ontologies, and do not define any new
classes or properties, and only contain instance data such as Named Individuals and their properties.
These ontologies serve two primary purposes. First, to define instance ontologies to support a use case.
The use-case instances are used as examples so tools implementing that use case may generate similar
use-case instances through automation. Ontology instance management tools can also be defined based on
the use-case instance ontologies (e.g., diffs between instances of different versions). Second, the use-case
instances define the configuration (classes, properties, and individuals) of all ontologies imported to
support a use case. This configuration will help to develop tools for managing the ontologies (e.g., to
support a version upgrade).

2.2 ONTOLOGY MODULARITY

CCER Ontology is designed to be modular. The unit of modularity in CCER is a Topic. A Topic
contains multiple ontology files that are closely related. This close relationship implies that when one of
the ontology files changes within a Topic, it is likely that many other files in that Topic also need to be
changed. When third-party ontologies are imported, the entirety of the ontology is considered a Topic in
CCER. However, what constitutes a Topic when ontologies are designed by the CCER team is very much
dependent on the subject of the Topic.

New Topics can be added to CCER Ontology with relative ease. Owners, who are responsible for
its upkeep, can be assigned to specific Topics. To support distributed development of the Topics, the
remote and off-line modifications to CCER Ontology must be eventually integrated with CCER
Ontology.

1 SCAP is maintained as an ontology by CCER, though it was created in XML form by external parties.

8

A Topic may contain another Topic. Such inclusion occurs when a specific Topic grows in
complexity, and it makes more sense to split one Topic into multiple Topics. For example, a network
Topic may evolve into layer3_network and layer2_network. When a Topic is split into multiple Topics,
considerations such as the impact of the new namespaces need to be addressed.

When an ontology needs to be extended, there may be a need to not to change the original ontology
files. This kind of extension may occur in multiple circumstances, as enumerated below.

1. When a third-party ontology that is maintained external to CCER is extended,

2. When a CCER-originated ontology is widely used by many other ontologies, and a change
directly to this ontology may trigger an undesirable broader update to CCER Ontology, or

3. When two unchangeable ontologies need to be integrated.

We use a technique called bridging in these circumstances to extend ontologies. We discuss
bridging next.

2.2.1 Bridging

A bridge is essentially an ontology created by aligning multiple ontologies. When third-party
ontologies cannot be modified due to IP restrictions or because the ontologies are maintained actively, a
bridge ontology containing classes that connect the (unchangeable) upper ontology to the (unchangeable)
third-party ontology or ontologies should be defined. The name of the bridge ontology must reflect all of
the ontologies that it is directly importing for the purpose of bridging. As an example, the bridge ontology
between KaOS (core ontology) and NML (domain ontology) defines subclass relations between the NML
classes to the KaOS classes. In this bridge ontology, the NML class of NetworkObject is defined as a
subclass of more generic KaOS ComputingEntity class.

Where necessary, bridge ontologies can be defined in order to relate third-party ontologies to other
CCER Ontology. Let us consider two ontologies, a “first ontology,” and a “second ontology.” In the
bridge ontology, the following definitions can be placed to bridge the first ontology to the second
ontology:

• Define equivalency of a class from the first ontology to a class in the second ontology,

• Define a class from the first ontology as a subclass of a class in the second ontology,

• Define the range of a property defined in the first ontology using a class in the second ontology,

• Adding a new property to a class in first ontology with its domain or range defined using the
class from the second ontology.

9

The bridge ontology should not define new classes or create properties that have domain and range
in the same ontology; either first or second. The intent of the bridge ontology is not to define new classes
but to extend definitions of existing classes in the linked ontologies but using the classes from the other
ontology. For example, the bridge between the host and network ontologies defines the new property of
the host such as hasIPAddress, hasMACAddress, hasSubnet, which have ranges defined using the classes
from the network ontologies.

2.3 FILE SYSTEM ALIGNMENT

CCER Ontology is organized using the concept of Topics and ontology files within those Topics.
Corresponding to each Topic, there is exactly one folder in CCER Ontology. The namespace assigned to
ontologies created by the CCER team has direct correspondence to the folders and the ontology file name.
We describe the folder structure first, followed by name spaces.

2.3.1 CCER Folder Structure

The topmost folder, ccerschema, for CCER Ontology will contain three subfolders, core, domain,
and usecase, corresponding to core, domain, and use-case ontologies.

The CCER core ontologies will be in folder ccerschema/core/ccer. The ontologies that go into this
subfolder are maintained by CCER ontology team members. Third-party core ontologies that are specified
and maintained by standards groups or third parties (e.g., OWL Time, Dublin Core, KaOS core
ontologies, and WSGS 84) are in folder ccerschema/core/third_party. A third-party ontology will be
considered a single Topic, and will be assigned a Topic and a folder name corresponding to the third-
party. For example, in Figure 2, see the folder foaf2 corresponding to Friend-Of-A-Friend ontology.

The Domain ontologies will be in folder “ccerschema/domain.” Domain ontologies created by the
CCER team are in folder ccerschema/domain/ccer. Third-party domain ontologies will be in folder
ccerschema/domain/third_party. Use-case ontologies are in folder ccerschema/usecase. Third-party use-
case ontologies will be in folder ccerschema/usecase/third_party. Topics maintained by the CCER team
are in the ccer subfolders of core, domain, and use-case folders. Topics that are not maintained by CCER
are in third-party subfolders of core, domain, and use-case folders. The following diagram illustrates the
folder structure for the CCER Ontology.

2 http://www.foaf-project.org/

10

Figure 2. CCER folder structure.

The top-level folders (core, domain, and use case) are defined by CCER to classify Topics
according to content. Within the core and domain folders, the second level further classifies Topics into
those developed by CCER (e.g., event, scap, firewall, host, etc.) and Topics created by a third party and
reused by CCER (e.g., nml, ndl, foaf, KaOS, etc.). Each use case is considered a Topic and will be defined
in its own folder underneath the usecase folder.

2.3.2 Namespaces

The namespace of an ontology in CCER is defined in its URI. For CCER-maintained ontologies,
URIs3 will follow this format:

http://ll.mit.edu/<YEAR>/ccer/<ontology_type>/<topic_name>[/<topic_name>]/<major_version_number>/<ontology_
file_name>

3 IRI is a generalized version of URI that supports international characters, and it may be used in place of
URI if the toolset supports it.

11

Ontologies within a Topic also will share the same namespace URI prefix. Here, <YEAR> is the
year of creation of the ontology; <ontology_type> is one or core, domain, or use case; <topic_name> is
the name of the Topic; [/<topic_name>] is a series of Topic names separated by “/”; and
<major_version_number> will have the form v<integer>, starting with v1. The <ontology_file_name> is
the actual name of the file in which an ontology exists. At least one topic_name is necessary, and multiple
<topic_name>s occur when there are nested Topics. Below is the pathname to the ontology file, and note
that the namespace scheme maintains a direct correspondence to the file structure.

ccerschema/<ontology_type>/<topic_name>[/<topic_name>]/<major_version_number>/<ontology_file_name>

As stated earlier, third-party ontologies will have the third-party assigned URI, and CCER will not
alter those URIs.

This page intentionally left blank.

13

3. VERSIONING SCHEME

Every ontology file will be assigned a full version number consisting of three numbers separated by
decimal points (e.g., v1.2.0), where the leftmost number is the major version, the middle number is the
minor version, and rightmost number is the pico version. By convention, the major version starts with v1,
while the minor and pico versions start with 0. Therefore, the first release of a new ontology should be
v1.0.0 to indicate the first major release with no incremental revisions.

As a matter of practice, minor version numbers are used for modifications thought to be generally
backward-compatible or limited in impact to applications and other ontologies. Major numbers are used
for incompatible versions or changes that may have wider impact. The pico number is used for internal
CCER development versioning only, and is therefore not exposed to end-users and is not indicative of
whether the changes are backward-compatible.

Only the major version number is used in the URIs for the ontologies. The full three-digit version
number is always included as an annotation within the content of the ontology file as explained in the next
section. The major version in the URI should always match the major version annotated within the file.
Indicating the full version in the contents rather than the URI allows for tracking incremental changes to
the ontology files using the minor and pico version numbers without changing the URI, and thus the
identity, of the ontology classes.

3.1 TOPIC EVOLUTION AND FOLDER STRUCTURE

In CCER Ontology, a Topic is the biggest unit that is versioned together. The release version of
CCER Ontology as a whole may not be defined, or if defined, may have no correspondence to the
versions of the Topics within it. The ontologies in a Topic may be versioned as v1, v2, etc., and the
folders corresponding to each version is called a “Version folder.” Every Topic contains one or more
version folders labeled with the major version of that Topic. Below are the Topic versioning rules.

1. All of the ontologies within a version folder in a Topic share the same major version number.

2. When some of the ontologies in a Topic need to be updated with a new major version, a new
version folder is created, and only the updated ontologies are stored in the new version folder.
The contents of the folder in the original Topic are untouched. In contrast, minor and pico
version changes are performed in place by incrementing the version value within the ontology
file each time it is modified.

3. When a new Topic is created with a subset of ontologies of the original Topic, a new Topic
folder is created within the original Topic folder, and the selected subset of ontologies are
added in a version folder, “v1,” inside the new Topic folder. The contents of the folder in the
original Topic is untouched.

14

 Figure 3. Major versions.

One key advantage of independently versioning each Topic is that multiple major versions of the
Topics in CCER can coexist in every release. The version subfolders will always start with the letter ‘v’
to distinguish version-labeled folders from other folders. For Topics developed by the CCER team, the ‘v’
is followed by an integer signifying the major version of that Topic (e.g., v1, v2, v3). For third-party
Topics maintained by CCER, the version folder names still start with ‘v’, but otherwise adopt the ‘native’
version scheme used by the third party.

Third-party Topic version conventions may vary but are typically based upon some numbering
scheme (e.g., v1, v1.2, v1.2.0, v3.0.1b2) or the release date (e.g., vYYYY-MM as in v2012-05). For
example, in Figure 3, CCER version conventions (i.e., “v1”) are used for the host and firewall ontologies.
On the other hand, foaf is shown with its native version numbering scheme of v0.1, and KaOS is shown
with a version number of v2012-06.

The usecase folder contains collections of example instances that serve as guidelines for how the
CCER ontology should be used in various contexts (e.g., lariat, lighthouse, llcysa, and vlan). Each of
these use-case folders contains one or more version subfolders starting with the letter ‘v’ followed by an

15

integer signifying the major version of that use case. No new classes or properties should be defined by
any of the ontology files in the usecase folder.

CCER versioning scheme used for the ontologies in core and domain may be used for ontologies in
usecase folder, though we do recognize that some non-CCER users may develop their own versioning
schemes.

3.2 ENCODING ONTOLOGY VERSIONING

In this section, we describe how version information is encoded or embedded in the ontology files
under multiple situations.

Version Embedding

Version numbers and their properties are embedded in the ontology files. Below are examples of
how such embedding is done.

Version Number

Version numbers (major.minor.pico) are embedded in every ontology file as owl:versionInfo
property4. The following example illustrates using owl:versionInfo, which is included for the
owl:Ontology node only:

<owl:Ontology rdf:about="http://sample.org/sample.owl">
 <owl:versionInfo>1.0.0</owl:versionInfo>
</owl:Ontology>

3.2.1 Depreciation Information

To indicate, that a class, property, or instance is depreciated during a minor version upgrade, the
owl:deprecated Annotation Property is used. This Annotation Property is not used if there are no classes,
properties, or instances that are not depreciated in an ontology file. Some ontology constructs cannot be
deprecated in this way, including cardinality, range, and transitivity, because there are no URIs to
deprecate. Additional custom Annotation Properties are defined specifically for CCER developers to
indicate the reason for depreciation, as well as the provenance of the depreciation (e.g., author).

The following example OWL syntax defines the additional deprecation annotation properties that
developers can use to document the reason and author of the deprecation for any class, property, or
individual.

4 https://www.w3.org/TR/owl-ref/#versionInfo-def

16

 <owl:AnnotationProperty rdf:about="http://sample.org/sample.owl#deprecationReason">
 <rdfs:label xml:lang="en">deprecation reason</rdfs:label>
 </owl:AnnotationProperty>

 <owl:AnnotationProperty rdf:about="http://sample.org/sample.owl#deprecationAuthorEmail">
 <rdfs:label xml:lang="en">deprecation author email</rdfs:label>
 </owl:AnnotationProperty>

The next example illustrates deprecating an OWL class using owl:deprecated as well as providing
the custom annotations indicating the reason for deprecation and the user.

<owl:Class rdf:about="http://sample.org/sample.owl#SampleClass">
 <owl:deprecated rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">true</owl:deprecated>
 <deprecationReason rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Replaced by
http://sample.org#new_sample.owl#NewSampleClass</deprecationReason>
 <deprecationAuthorEmail
rdf:datatype="http://www.w3.org/2001/XMLSchema#string">jsmith@sample.com</deprecationAuthorEmail>
</owl:Class>

The next example similarly illustrates the depreciation of a property.

<owl:ObjectProperty rdf:about="http://sample.org/sample.owl#sampleProperty">
 <owl:deprecated rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">true</owl:deprecated>
 <deprecationReason rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Replaced by
http://sample.org#new_sample.owl#newSampleProperty</deprecationReason>
 <deprecationAuthorEmail
rdf:datatype="http://www.w3.org/2001/XMLSchema#string">jsmith@sample.com</deprecationAuthorEmail>
</owl:ObjectProperty>

This final example shows the depreciation of a Named Individual.

<owl:NamedIndividual rdf:about="http://sample.org/sample.owl#sampleIndividual">
 <owl:deprecated rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">true</owl:deprecated>
<deprecationReason rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Replaced by
http://sample.org#new_sample.owl#newSampleProperty</deprecationReason>
 <deprecationAuthorEmail
rdf:datatype="http://www.w3.org/2001/XMLSchema#string">jsmith@sample.com</deprecationAuthorEmail>
</owl:NamedIndividual>

3.3 NO DELETE POLICY

A distribution of CCER Ontology will consist of the current and earlier versions of an ontology.
This policy allows a guarantee of complete continuity for members of the community who, for one reason
or another, must continue to use older versions.

17

4. ONTOLOGY EVOLUTION

The evolution of CCER ontology needs attention from both ontology developers and its users.
Ontology developers will need to assign version numbers appropriately as ontologies evolve, and the
users will need to understand how a version change affects their activities and tools that interface with the
CCER Ontology. Section 4.1 discusses version assignment, and Section 4.2 discusses the impact of
version changes to ontology users.

4.1 VERSION ASSIGNMENT BY DEVELOPERS

CCER Ontology consists of ontologies developed by the CCER team and also developed by third
parties. When an ontology developer wants to make changes to an ontology within CCER, a lot of design
issues must be considered. For example, “when is an ontology change considered a major upgrade, and
hence needs a namespace change?” This section provides a summary of guidelines that answers these
kinds of questions. Figure 4 illustrates how CCER ontology developers determine the version number for
a new CCER Topic when different kinds of changes or updates are made. Six major use cases along with
some variants are diagrammed in Figure 4.

1. Extending or refining an existing ontology (1). This use case covers situations when classes or
properties in an existing ontology have been added (A), removed (B), or modified (C). Adding
ontology classes or properties (A) poses the fewest problems and will always result in a minor version
change that is fully backward-compatible (J). When one or more ontology classes or properties are
removed (B), the result will always be a minor version change that is fully backward-compatible so
long as deprecation of the classes is properly performed (K). Handling modifications to existing
ontology classes or properties (C) is conditional. Depending on an assessment of whether the impact
of changes is small or large, this will require a minor (J) or major (K) version change to the CCER
topic release. If the version change is a major one (K), changes to class and properties will not be
fully backward-compatible. Deprecated classes, properties, and instances (and the associated
deprecation annotations) will need to be removed (L), the major version number in the ontology’s
versionInfo annotation will need to be incremented (with minor and pico version numbers set to 0),
and a new folder needs to be created for the incremented major version (M). This new folder will
need to be created with copies of updated topic files and any dependent ontology files from the
previous version (updated as required)—in other words, everything that is still necessary for the new
major version. This will require the creation of new namespace URIs for the incremented version
ontologies and the modification of imported URIs in dependent ontology files (G). All such
dependent ontologies will then need to undergo a major version change (K) and all the subsequent
actions that this entails (L, I, M, G).

18

Figure 4. Assigning version sumbers.

19

2. Adding a new core or domain ontology (2). The first thing that should be done, in case this is a third-
party ontology, is a check to make sure no copyrights are violated (D). Bridge ontologies may need to
be created to use these third-party ontologies. This may restrict redistribution and will require
attribution to the third party in documentation. Adding the ontology will also require adding an
imported ontology URI to existing ontologies that use it, requiring a minor version change in these
dependent ontologies (E). This change, however, will be fully backward-compatible. If it is a new
topic, it will also require creating a new folder with a subfolder for the initial version (N).

3. Upgrading to a new version of an imported core or domain ontology (3). This use case covers
situations when there is a version upgrade of an imported ontology. Such a change requires a
modification of the imported ontology URI (F) and thus necessitates a major version change to the
CCER topic (K). Deprecated classes, properties, and instances (and the associated deprecation
annotations) will need to be removed, the major version number in the ontology’s versionInfo
annotation will need to be incremented (with minor and pico version numbers set to 0), and a new
folder for the incremented major version (M) needs to be created. This new folder will need to be
created with copies of 1) updated topic files, and 2) any dependent ontology files from the previous
versions (updated as required)—in other words, everything that is still necessary for the new major
version. This will require the creation of new namespace URIs for the incremented version ontologies
and the modification of imported URIs in dependent ontology files (G). All such dependent
ontologies will then need to undergo a major version change (J) and all the subsequent actions that
this entails (L, I, M, G).

4. Adding Named Individuals (4). These sorts of modifications should require only a change to minor
version number for core and domain ontologies and will almost always be fully backward-
compatible, though they might impact software tools using the ontology.

5. Removing or modifying individuals (5). Depending on an assessment of whether the impact of
changes is small or large, this will require a minor (J) or major (K) version change to the CCER
ontology release. If the version change is a major one (J), the new release will not be fully backward-
compatible. Deprecated classes, properties, and instances (and the associated deprecation annotations)
will need to be removed, the major version number in the ontology’s versionInfo annotation will need
to be incremented (with minor and pico version numbers set to 0), and a new folder will need to be
created for the incremented major version (M). This new folder will need to be created with copies of
1) updated topic files, and 2) any dependent ontology files from the previous version (updated as
required)—in other words, everything that is still necessary for the new major version. This will
require the creation of new namespace URIs for the incremented version ontologies and the
modification of imported URIs in dependent ontology files (F). All such dependent ontologies will
then need to undergo a major version change (K) and all the subsequent actions that this entails (L, I,
M, G). Often, when use cases are updated, the corresponding ontology file will be upgraded to a
newer major version number.

20

6. Bug fixes. These sorts of modifications should require only a change to the pico version number and
should almost always be fully backward-compatible.

Both major and minor version updates require a manual or automated harmonization check (O).

4.2 ONTOLOGY EVOLUTION FOR USERS

When a user of CCER Ontology observes changes in the version of a Topic in CCER Ontology,
then the question arises as to how the changes in CCER Ontology impacts the user. This section addresses
this question.

Figure 5. Impact of version upgrade on users.

The figure above is designed to help CCER ontology users ascertain the impact of a new release of
the CCER Ontology. The users may be concerned that the instance ontology they generated conforms
with the newer version of CCER Ontology, or may be concerned that some changes they intend to make
will break the conformance to the version. Only in the case of added classes, properties, and imported
ontologies, when there is a minor version change, can guarantees be made about full backward
compatibility. Minor version changes with modified or removed classes and properties may result in

21

situations where backward compatibility cannot be guaranteed. However, if the practices above for
deprecating classes and properties have been followed, backward compatibility can be maintained.
Backward compatibility is definitely not guaranteed when imported ontologies have been modified or
removed and a major version change to the bundle is indicated.

1. Pico version change. Pico version changes may include changes to class names, ranges,
cardinality, transitivity, etc. They may also involve individuals that are added, modified, or
removed. In almost all cases, such changes will be fully backward-compatible, but this is not
guaranteed to be the case (B). For this reason, manual and/or automated consistency checks
should always be performed (4).

2. Minor version change. Minor version changes will be fully backward-compatible (A) in the
case of updates that consist only of some combination of the following: 1) added classes to
existing ontologies and/or added imported ontologies (D), and 2) removed classes that have
been deprecated in a manner consistent with practices outlined in this document. In the case of
modified or removed classes (E), the changes will not necessarily be fully backward-
compatible (B). For this reason, manual and/or automated consistency checks should always be
performed (4).

3. Major version change. Major version changes may include modified or removed ontologies, in
addition to any of the kinds of changes discussed in 1 or 2 above. No guarantees about
backward compatibility can be made in such cases (C), and manual and/or automated
consistency checks should always be performed (4).

Ontology consistency check. Manual or automated checks may reveal any of the types of changes
described above and need to be handled accordingly.

This page intentionally left blank.

23

5. CONCLUSION

Versioning ontologies is a complex task, yet is necessary to maintain the integrity of ontologies,
and applications that depend on them. In this document, we described the guidelines the CCER team
adopted for versioning of CCER Ontology. The guidelines aim to reduce the complexity of versioning by
stipulating correlation of folder structure, and namespace URIs, and a defined process for version
upgrades. We also describe guidelines on how the users of an ontology may assess an impact of a version
upgrade. We introduce the idea of a Topic as the unit for versioning in contrast to versioning the CCER
Ontology. Understanding the state of the versions of the Topics in an ontology can be time-consuming
and tedious, and automated tools will be needed to effectively manage versioning. Future work will
include creating tools for instance configuration comparison, topic evolution analysis, process for Topic
submissions, and automation for ontology merging.

This page intentionally left blank.

25

BIBLIOGRAPHY

[CSTL1] P. Haglich, R. Grimshaw, S. Wilder, M. Nodine, and B. Lyles, “Cyber Scientific Test
Language,” in L. Aroyo et al. (Eds.), ISWC 2011, Springer-Verlag Berlin Heidelberg (2011), Lecture
Notes in Computer Science, vol. 7032, Part II, pp. 97–111.

[CCER1] S.K. Damodaran and D. Tidmarsh, “Model-Based Verification of Cyber Range Event
Environments,” Spring Simulation Multi-Conference, Pasadena, CA, April (2016) (to be presented).

[CRIS1] S.K. Damodaran and J.M. Couretas, “Cyber Modeling & Simulation for Cyber-Range Events,”
Summer Simulation Multi-Conference, Chicago, IL (2015).

[NOY1] N.F. Noy and T. Tudorache, “Collaborative Ontology Development on the (Semantic) Web,”
AAAI Spring Symposium: Symbiotic Relationships between Semantic Web and Knowledge Engineering,
(2008).

[LHK09] M. Loskyll, D. Heckmann, and I. Kobayashi, “UbisEditor 3.0: Collaborative Ontology
Development on the Web,” in Proceedings of the Hypertext 2009 Workshop on Web (2009).

 [SEA1] W3C, Search Engines, https://www.w3.org/wiki/Search_engines, accessed 2 February 2016.

[VURI] Community:Versioning and URIs, http://ontologydesignpatterns.org/wiki/Community:
Versioning_and_URIs, accessed 2 February 2016.

[RGZH] E. Jiménez-Ruiz, B. Cuenca Grau, Y. Zhou, and I. Horrocks, “Large-Scale Interactive Ontology
Matching: Algorithms and Implementation,” in Proc. of ECAI (2012).

[GJKZ] B.C. Grau, E. Jiménez-Ruiz, E. Kharlamov, and D. Zheleznyakov, “Ontology Evolution Under
Semantic Constraints,” in Proc. of International Conference on Principles of Knowledge Representation
and Reasoning (KR), Rome, Italy (2012).

[RGHB] E. Jiménez-Ruiz, B. Cuenca Grau, I. Horrocks, and R. Berlanga, “Supporting Concurrent
Ontology Development: Framework, Algorithms and Tool,” Data & Knowledge Engineering, vol. 70,
Issue 1, January 2011, pp. 146−164, ISSN 0169-023X, http://dx.doi.org/10.1016/j.datak.2010.10.001.

[OWL2] W3C, OWL 2 Web Ontology Language Structural Specification and Functional-Style Syntax
(Second Edition), W3C Recommendation (11 December 2012), https://www.w3.org/TR/owl2-syntax/,
accessed 2 February 2016.

[OWL3] W3C, OWL Web Ontology Language Use Cases and Requirements, W3C Recommendation
(10 February 2004), https://www.w3.org/TR/2004/REC-webont-req-20040210/.

26

[OVR1] W3C, Ontology Versions, https://www.w3.org/2007/OWL/wiki/Ontology_Versions, accessed
2 February 2016.

[RDF1] Resource Description Framework (RDF), https://www.w3.org/RDF/

[UBJ2004] A. Uszok, J.M. Bradshaw, and R. Jeffers, “Kaos: A Policy and Domain Services Framework
for Grid Computing and Semantic Web Services,” Trust Management, Springer Berlin Heidelberg (2004),
pp. 16−26.

[TIME] W3C, “Time Ontology in OWL,” W3C Working Draft (27 September 2006),
https://www.w3.org/TR/owl-time/.

[NML] J. van der Ham, F. Dijkstra, R. Łapacz, and J. Zurawski, “Network Markup Language Base
Schema version 1,” Open Grid Forum, GFD-R-P.206, Grid Final Draft (May 2013).

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

15-03-2016
2. REPORT TYPE
 Technical Report

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER
FA8721-05-C-0002 & FA8702-15-D-0001

Versioning System for Distributed Ontology Development 5b. GRANT NUMBER

 5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

Suresh Damodaran

5e. TASK NUMBER

 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

MIT Lincoln Laboratory
244 Wood Street
Lexington, MA 02420-9108

TR-1204

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Office of the Assistant Secretary of Defense for Research & Engineering ASD(R&E)
3040 Defense Pentagon, Room 3C855A
Washington, DC 20301 11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release: distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
 Common Cyber Environment Representation (CCER) is an ontology for describing operationally relevant, and technically
representative, cyber range event environments. Third-party ontology developers, as well as in-house ontology developers, contributed to
CCER Ontology. Since the cyber range environments continue to evolve and expand, we expect the CCER Ontology also to evolve and
expand. Therefore, an easy to comprehend versioning scheme that will support a systematic ontology evolution is needed. This document
describes the requirements for such a versioning scheme, and its design. This document also describes how to assign version numbers under
different ontology evolution situations, and provides guidelines for evaluating the impact of the version changes.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

Same as report 39 19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

	Technical Report 1204: Versioning System for Distributed Ontology Development
	Executive Summary
	Acknowledgments
	Table of Contents
	List of Illustrations

	1. INTRODUCTION
	2. CCER ONTOLOGY ORGANIZATION
	2.1 ONTOLOGY TAXONOMY
	2.1.1 Origination-based Taxonomy
	2.1.2 Usage-based Taxonomy

	2.2 ONTOLOGY MODULARITY
	2.2.1 Bridging

	2.3 FILE SYSTEM ALIGNMENT
	2.3.1 CCER Folder Structure
	2.3.2 Namespaces

	3. VERSIONING SCHEME
	3.1 TOPIC EVOLUTION AND FOLDER STRUCTURE
	3.2 ENCODING ONTOLOGY VERSIONING
	3.2.1 Depreciation Information

	3.3 NO DELETE POLICY

	4. ONTOLOGY EVOLUTION
	4.1 VERSION ASSIGNMENT BY DEVELOPERS
	4.2 ONTOLOGY EVOLUTION FOR USERS

	5. CONCLUSION
	BIBLIOGRAPHY

